Estimating and Responding to Near-repeat Burglaries

POP 2018
Providence, RI

Elizabeth Groff, PhD (groff@temple.edu)
Travis Taniguchi, PhD (taniguchi@rti.org)

This project was supported by Award No. 2012-IJ-CX-0039, awarded to the Police Foundation by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Justice.

Agenda

Part 1: A primer on near repeat patterns
 • Definitions and terms
 • Existing knowledge
 • Importance of considering crime prevention potential

Part 2: NR Crime Prevention Potential Calculator

Part 3: Example analysis in Philadelphia
Part 1: Background

What is the near repeat pattern of burglary and why should I care?

Part 1: Repeat and near repeat burglary

• Repeat burglary phenomenon
 • Same house victimized multiple times
• Near repeat burglary phenomenon
 • Burglary increases risk for houses nearby
 • Space-time window varies
• Instigator/Originator event
 • First burglary
• Repeat event
 • Subsequent burglary within space-time window
Part 1: Near repeat burglary patterns

- Burglary occurrence associated with increased risk for neighbors
- Risk decays over time and space
- Size/duration of space-time high risk window varies

What do we know about near repeat burglary patterns?

Part 1: Size of high risk window

- Early studies international (UK, Australia)
 - Distance: 200 – 400 meters (656 - 1,328 feet)
 - Time: 2 – 4 weeks
- US studies increased since 2014
 - Distance: 100 – 244 meters (328 – 800 feet)
 - Time: 14 days or less
 - Baltimore County, MD; Houston, TX; Indianapolis, IN; Jacksonville, FL; Long Beach, CA; Newark, NJ; Pompano Beach, FL; Redlands, CA
- Must take quick action
- Size of area is reasonable
Part 1: Where do near repeats occur?

• Urban backcloth characteristics

• Near repeats more likely if:
 • Housing type and layout are similar
 • Public and other ‘at risk’ private housing complexes (Moreto et al, 2014)
 • Pawn shops (Moreto et al, 2014)
 • Drug markets (Moreto et al, 2014)
 • Burglar residences (Moreto et al, 2014)
 • Rivers (Piza and Carter, 2017)
 • Railroad tracks (Piza and Carter, 2017)

Part 1: Where do near repeats occur?

• Socio-economic indicators; micro and meso levels

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentrated disadvantage</td>
<td>Positive</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Residential instability</td>
<td>Positive</td>
<td>Positive</td>
<td></td>
</tr>
<tr>
<td>Housing density</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Racial heterogeneity</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Young male population</td>
<td>Positive</td>
<td>Positive</td>
<td></td>
</tr>
</tbody>
</table>
Part 1: What works to prevent near repeats?

• Hot spots policing
 • Yes
 • Patrolled during high burglary times – 26% reduction (Fielding and Jones, 2012)
 • Patrolled places with past burglary concentration – 21% reduction (Santos and Santos, 2015a,b)
 • No
 • RCT in Holland (Elffers et al, 2018)
 • Why?
 – Most repeats occurred same day as initiator
 – Relatively few repeats overall

Part 1: What works to prevent near repeats?

• Non-police centric strategies

<table>
<thead>
<tr>
<th></th>
<th>Repeat victimization</th>
<th>Near repeat victimization micro (Neighborhood)</th>
<th>Near repeat victimization (Micro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crime prevention</td>
<td>Yes</td>
<td>Positive</td>
<td>Mixed, positive</td>
</tr>
<tr>
<td>information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target hardening tools</td>
<td>Yes</td>
<td>Positive</td>
<td>Mixed, positive</td>
</tr>
<tr>
<td>Notification of increased risk</td>
<td>Yes</td>
<td>Positive</td>
<td>Mixed, positive</td>
</tr>
<tr>
<td>Offer of a security audit</td>
<td>Yes</td>
<td>Positive</td>
<td>Mixed, positive</td>
</tr>
<tr>
<td>Uniformed personnel</td>
<td>Yes</td>
<td>Positive</td>
<td>Mixed, positive</td>
</tr>
</tbody>
</table>

References

Johnson, et al 2017

Groff and Taniguchi, 2018; Wellsmith and Birks, 2008
Part 1: Does notification increase fear?

Citizens do not report increased concern about crime

(Groff and Taniguchi, 2018; Johnson et al, 2017)

Part 1: What do volunteers think?

Volunteers liked participating
Felt the program improved police-community relations

(Groff and Taniguchi, 2018)
Part 1: Tackling near repeat burglary

Advantages:
- Leverages volunteer corps for crime prevention
- Activates citizens in the co-production of community safety
- Basis for partnerships with other agencies and nonprofit groups
- Can be very low cost

Challenges
- **All burglaries versus actionable burglaries**
 - NRC uses all burglaries
 - Intervention focus: Stop pattern versus prevent initiating burglary
- Delays in reporting burglaries
- Non reporting of burglaries

Determining the crime prevention potential of an intervention
Crime prevention potential

• Number of crimes that could possibly be prevented by an intervention
• Shifts the focus from all crime to actionable crime

Part 1: Investigating the mystery

If NRC found significant space-time clustering, why did relatively few burglaries have follow-ons?

Can we better specify the potential impact of disrupting NR patterns?
Part 1: Measurement differences

- NRC
 - Each pair is classified so individual burglaries might 'count' toward more than one pair
 - Burglaries that occur on the same day as the originator event are not preventable but count as repeats
 - Distance is measured with Euclidean or Manhattan

Part 1: Value of CPP

- For practitioners
 - Should we undertake this intervention?
 - Was the intervention successful?
 - Is it worth continuing?
 - Measured at micro level

Realistic metric for evaluating program success
Part 1: A motivating scenario

Consider the scenario
Two cities have 1,000 burglaries a year and implement an intervention to reduce that number...

- Prior to implementation, the number of burglaries that were near repeats is calculated as 100.
- Burglaries in program areas go down by 50, a 50% reduction.
- Program expanded because of success.

Agency A

Part 1: NR-CPP- Example

9 burglaries from January 1st through June 30th

High risk threshold
- 800 feet
- 30 days
Part 1: NR-CPP- Example

Filter on distance threshold
- Only connections within spatial threshold are shown

Part 1: NR-CPP- Example

- Consider timing and identify potential pairs

Example A
- (1) Jan. 3
- (2) Jan. 18
- (4) Feb. 1
- (5) March 20
- (6) April 18
- (7) April 19
- (8) May 20
- (9) June 17

Example B
- (3) Jan. 18
- (7) April 19

Example C
Part 1: NR-CPP- Example

Example A

<table>
<thead>
<tr>
<th>Event</th>
<th>Event</th>
<th>Within Distance?</th>
<th>Different Day?</th>
<th>Within Time?</th>
<th>Event Allocated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>

No near repeat events in these examples

Example B

<table>
<thead>
<tr>
<th>Event</th>
<th>Event</th>
<th>Within Distance?</th>
<th>Different Day?</th>
<th>Within Time?</th>
<th>Event Allocated?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Example C

Two near repeat events in these examples

<table>
<thead>
<tr>
<th>Event</th>
<th>Event</th>
<th>Within Distance?</th>
<th>Different Day?</th>
<th>Within Time?</th>
<th>Event already allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Event</th>
<th>Within Distance?</th>
<th>Different Day?</th>
<th>Within Time?</th>
<th>Event already allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Event</th>
<th>Within Distance?</th>
<th>Different Day?</th>
<th>Within Time?</th>
<th>Event already allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Event</th>
<th>Within Distance?</th>
<th>Different Day?</th>
<th>Within Time?</th>
<th>Event already allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Event</th>
<th>Within Distance?</th>
<th>Different Day?</th>
<th>Within Time?</th>
<th>Event already allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>
How can we automate this process?

We build a tool!

Part 1: NR-CPP - Methodology

Part 1: NR-CPP - Demonstration

- Examining open source data from seven cities (data.policefoundation.org/)
 - Denver
 - Durham
 - Fayetteville
 - Orlando
 - Philadelphia
 - Santa Rosa
 - Seattle
 - St. Louis
Part 1: NR-CPP - Results

<table>
<thead>
<tr>
<th></th>
<th>Baltimore Co.</th>
<th>Redlands</th>
<th>Denver</th>
<th>Durham</th>
<th>Fayetteville</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Weeks</td>
<td>5.89</td>
<td>7.76</td>
<td>14.97</td>
<td>14.30</td>
<td>14.51</td>
</tr>
<tr>
<td>Orlando</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Baltimore Co.</th>
<th>Redlands</th>
<th>Denver</th>
<th>Durham</th>
<th>Fayetteville</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Blocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Weeks</td>
<td>8.18</td>
<td>15.24</td>
<td>23.90</td>
<td>21.98</td>
<td>20.53</td>
</tr>
<tr>
<td>Orlando</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philadelphia</td>
<td>30.77</td>
<td>35.84</td>
<td>16.47</td>
<td>26.31</td>
<td>32.97</td>
</tr>
</tbody>
</table>
NR-CPP - Variable patterns

Take away points

• Global NR risk ≠ actionable NR risk
• The CPP of NR varies by city and within cities
• CPP should be integrated into analysis process
 • Calculate CPP prior to designing intervention
 • Drill down the cone of resolution to identify ‘where’
• Quantify crime problem
 • Analysis: Should we undertake this intervention?
 • Assessment: Was the intervention successful?
QUESTIONS?

Part 2: Example using NR-CPPC

- All written guides, presentations and software are available at:

- Scroll down and look for Resources & Tools part of page
- Download software and sample data
- Read user guide
Part 2: NR-CPPC Interface

Near Repeat Prevention Tool

- Leave this field blank AND select “Network Distance”
 - Program will download and use OpenStreetMap data
- Link to a street file AND select “Network Distance”
 - Program will use your Shapefile
- Leave this field blank AND select other distance metric
 - No street file needed
Part 2: NR-CPP - Distance measurement

Network Distance

Manhattan Distance

Euclidean Distance
Part 2: NR-CPPC- Controlling what is counted

Option 1 - Allows events to be counted in multiple NR chains
Option 2 - Allows events to be originators and repeat events
Option 3 - Allows same-day events to be counted in NR chains

Robust evaluations would generally require leaving Options 1 & 2 unchecked.

Part 2: NR-CPP- Output files

Program writes out file called count.csv that has:

1. Count of events per space-time bin
2. Spatial min and max
3. Temporal min and max
Part 2: NR-CPP - Output files

Program writes out one file for each space-time bin that begin with ‘originator’

Each file has the id numbers for all events that were originators and the id numbers for all their associated repeat events

1. Originator_event_ids – may be duplicates
2. Repeat_event_id

Program writes out one file for each space-time bin that begin with ‘repeat’

Each file has the id numbers for all events that were originators and the id numbers for all their associated repeat events

1. Event_id – each record is a unique originator id
2. Repeat_event_ids – ids of repeat events separated by pipe

Note: ArcMap reads pipe as NULL
Part 2: Using output from CPPC

• Number of preventable near repeats
• Proportion of all burglaries that are near repeats
• Geographic concentration in the locations of near repeats

QUESTIONS?
Where to deploy crime prevention resources targeting near repeat burglary?

PHILADELPHIA EXAMPLE

POP/NR Analysis Framework

- Identify where near repeat problems exist
- Near Repeat Calculator to identify global patterns
- Near Repeat Crime Prevention Potential tool to explore local variability
- Develop an intervention
- Respond to NR pattern using NRAIT
- Run as an RCT if desired
- Use output from NRAIT to assess effect
- Conduct additional statistical analyses
Part 3: Analyzing near repeat crime

1. Calculate global near repeat patterns

Calculating Global Risk

- Near repeat calculator
 - Over what space-time windows does a statistically significant near repeat pattern exist?
Calculating Global Risk - Example

- Baltimore County, MD
 - Significant space-time risk
 - Near repeat pattern exists

<table>
<thead>
<tr>
<th></th>
<th>0-7 Days</th>
<th>8-14 Days</th>
<th>15-21 Days</th>
<th>22-28 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same location</td>
<td>5.18</td>
<td>1.58</td>
<td>0.00</td>
<td>8.14</td>
</tr>
<tr>
<td>1 to 400 ft.</td>
<td>4.46</td>
<td>1.55</td>
<td>1.24</td>
<td>1.09</td>
</tr>
<tr>
<td>401 to 800 ft.</td>
<td>1.64</td>
<td>2.12</td>
<td>1.17</td>
<td>1.30</td>
</tr>
<tr>
<td>801 to 1200 ft.</td>
<td>2.17</td>
<td>1.57</td>
<td>1.07</td>
<td>1.31</td>
</tr>
<tr>
<td>1201 to 1600 ft.</td>
<td>1.27</td>
<td>1.40</td>
<td>1.31</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Part 2: Concentration - Philadelphia

![Number of Originators vs Number of NR events graph]

Number of Originators

Number of NR events

1 2 3 4 5 6 7
0 100 200 300 400 500 600
Part 2: Examine burglary across police units

- Total burglary
- Proportion of burglary problem that is involves preventable near repeats

Part 2: Philadelphia, by District

High prevalence of burglary AND high rate of NR

Low prevalence of burglary AND low rate of NR
Part 2: NR-CPP- Mapping

• Add the Excel file into your ArcMap session
• Join the information from NRCPC to your shp file
 • Identify the originators (Originator_ID)
 • Identify the repeats (Repeat_ID)
• Visually display the pattern of each
• Use the hot spot tool to discover where there are concentrations of near repeat events.

These are the areas to focus NR prevention efforts

Part 2: NR-CPP- Geographic concentration
Part 2: Geographic concentration

• Within district variation in near repeat concentration
QUESTIONS?

Take away points

• Residential burglary CPP varies by city
• CPP should be integrated into analysis process
 • Calculate crime prevention potential prior to designing intervention
 • Examine length of patterns
 • Drill down the cone of resolution to identify ‘where’
• Quantify crime problem
 • Should we undertake this intervention?
 • Was the intervention successful?
• May be relevant for other crime types
Estimating and Responding to Near-repeat Burglaries

POP 2018
Providence, RI

Elizabeth Groff, PhD (groff@temple.edu)
Travis Taniguchi, PhD (taniguchi@rti.org)

This project was supported by Award No. 2012-U-CX-0039, awarded to the Police Foundation by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Justice.